Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(7): e2201944119, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745805

RESUMO

Biodiversity loss poses a major threat to ecosystem function, which has already been severely impacted by global late-Quaternary defaunation. The loss of mammalian megafauna from many insular systems has rendered reptiles into key modulators of many ecosystem services, such as seed dispersal and pollination. How late-Quaternary extinction events impacted reptile functional diversity remains unclear but can provide critical guidance on traits that render reptiles vulnerable to extinction, as well as anthropogenic, environmental, and evolutionary histories that may promote stability and resilience. This study reconstructs the trajectory of functional diversity change in the Caribbean reptile fauna, a speciose biota distributed over a diverse set of islands with heterogeneous histories of human habitation and exploitation. Human-induced Quaternary extinctions have completely removed key functional entities (FEs)-groupings of species with similar traits that are expected to provide similar ecosystem services-from the region, but functional redundancy on large islands served as a buffer to major functional diversity loss. Small islands, on the other hand, lose up to 67% of their native FEs with only a few exceptions, underscoring the importance of a place's anthropogenic history in shaping present-day biodiversity. While functional redundancy has shielded ecosystems from significant functional diversity loss in the past, it is being eroded and not replenished by species introductions, leaving many native FEs and the communities that they support vulnerable to extinction and functional collapse. This research provides critical data on long-term functional diversity loss for a taxonomic group whose contributions to ecosystem function are understudied and undervalued.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Biota , Répteis , Índias Ocidentais , Mamíferos
2.
J Morphol ; 283(5): 653-676, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35178728

RESUMO

Ambystoma (Tschudi, 1838) represents a speciose clade of salamanders that are found across much of North America. Fossils referred to Ambystoma are reported from early Cenozoic deposits and are common in Quaternary fossil deposits. Most fossils identified as Ambystoma are isolated vertebrae. Both quantitative and qualitative characters were reported as being useful for identifying fossilized vertebrae of Ambystoma below the genus level. However, there is limited information on intraspecific variation in those characters and previous studies noted intracolumnar variation which affects the utility of those characters for fossil identification. A lack of understanding of variation in modern species of Ambystoma casts uncertainty on our ability to identify fossil vertebrae confidently. We aimed to document intraspecific and intracolumnar variation in vertebral morphology among species of Ambystoma and examine the implications for fossil identification. We assembled one of the largest skeletal data sets for Ambystoma and took linear measurements on 15 species. We used 2D geometric morphometric analyses to characterize atlantal shape variation in Ambystoma. We apply those morphometric data in a case study where we identify fossil vertebrae from Hall's Cave, a Quaternary fossil locality in central Texas. We found patterns of intraspecific and intracolumnar variation that have substantial implications for fossil identification. Classification accuracies for species and clades within Ambystoma varied considerably. Overall classification accuracies based on size-adjusted measurements and 2D geometric morphometric landmarks were lower compared with classifications from non-size adjusted linear measurements. We identified fossil vertebrae from our case study as likely belonging to the tiger salamander clade within Ambystoma, but found that some fossils with lower classification probabilities are of uncertain identity. We discuss biogeographic implications for our fossil identifications and comment on challenges and next steps for advancing our understanding of morphological variation in Ambystoma.


Assuntos
Fósseis , Urodelos , Ambystoma , Animais , Filogenia , Coluna Vertebral
3.
PeerJ ; 9: e10856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777514

RESUMO

How species will respond to ongoing and future climate change is one of the most important questions facing biodiversity scientists today. The fossil record provides unparalleled insight into past ecological and evolutionary responses to climate change, but the resource remains virtually untapped for many organisms. We use geometric morphometrics and a 25,000 year fossil record to quantify changes in body size and mandible shape through time and across climate regimes for two bat species present in Quaternary paleontological deposits of central Texas: Myotis velifer, a bat distributed throughout the Southwestern US and Mexico that is still found in central Texas today, and Eptesicus fuscus, a bat widely distributed throughout North America that has been extirpated in central Texas. Because of ecogeographic rules like Bergmann's rule, which posits that endotherms are larger in colder environments, we hypothesized that both species were larger during cooler time intervals. Additionally, we hypothesized that both species would show variation in dental morphology across the studied sequence as a response to climate change. While we found a decrease in centroid size-a proxy for --body size-through time for both species, we could not establish a clear relationship between centroid size and temperature alone. However, we did find that specimens from drier environments were significantly larger than those from wetter ones. Furthermore, we found significant dental shape variation between environments reflecting different temperature levels for both species. Yet only M. velifer exhibited significant variation between environments of varying precipitation levels. This result was surprising because present-day populations of E. fuscus are highly variable across both temperature and precipitation gradients. We determined that the morphological change experienced by M. velifer through time, and between warmer and cooler temperatures, was associated with the coronoid process, condylar process, and the mandibular symphysis. These parts play a pivotal role in bite force, so changes in these features might relate to changes in diet. We show that long-term datasets derived from fossil material provide invaluable insight not only into the validity of ecogeographic rules, but also into the adaptive capacities of extant taxa when faced with environmental changes. Our results highlight diverging responses to a variety of climate factors that are relevant to consider in biodiversity research given ongoing global change.

5.
Proc Biol Sci ; 287(1927): 20200447, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32429803

RESUMO

The human-mediated movement of species across biogeographic boundaries-whether intentional or accidental-is dramatically reshaping the modern world. Yet humans have been reshaping ecosystems and translocating species for millennia, and acknowledging the deeper roots of these phenomena is important for contextualizing present-day biodiversity loss, ecosystem functioning and management needs. Here, we present the first database of terrestrial vertebrate species introductions spanning the entire anthropogenic history of a system: the Caribbean. We employ this approximately 7000-year dataset to assess the roles of historical contingency and priority effects in shaping present-day community structure and conservation outcomes, finding that serial human colonization events contributed to habitat modifications and species extinctions that shaped the trajectories of subsequent species introductions by other human groups. We contextualized spatial and temporal patterns of species introductions within cultural practices and population histories of Indigenous, colonial and modern human societies, and show that the taxonomic and biogeographic diversity of introduced species reflects diversifying reasons for species introductions through time. Recognition of the complex social and economic structures across the 7000-year human history of the Caribbean provides the necessary context for interpreting the formation of an Anthropocene biota.


Assuntos
Biodiversidade , Ecossistema , Animais , Biota , Região do Caribe , Conservação dos Recursos Naturais , Extinção Biológica , Humanos , Espécies Introduzidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...